Activation kinetics of AMPA receptor channels reveal the number of functional agonist binding sites.

نویسندگان

  • J D Clements
  • A Feltz
  • Y Sahara
  • G L Westbrook
چکیده

AMPA and NMDA receptor channels are closely related molecules, yet they respond to glutamate with distinct kinetics, attributable to differences in ligand binding and channel gating steps (for review, see Edmonds et al., 1995). We used two complementary approaches to investigate the number of functional binding sites on AMPA channels on outside-out patches from cultured hippocampal neurons. The activation kinetics of agonist binding were measured during rapid steps into low concentrations of selective AMPA receptor agonists and during steps from a competitive AMPA receptor antagonist, 6-cyano-7-nitro-quinoxaline-2,3-dione, into a saturating concentration of agonist. Both approaches revealed sigmoidal kinetics, which suggests that multiple agonist binding steps or antagonist unbinding steps are needed for channel activation. A kinetic model with two independent binding sites gave a better fit to the activation phase than models with one or three independent sites. A more refined analysis incorporating cooperative interaction between the two binding sites significantly improved the fits to the responses. The affinity of the first binding step was two to three times higher than the second step. These results demonstrate that binding of two agonist molecules are needed to activate AMPA receptors, but the two binding sites are not identical and independent. Because NMDA receptors require four ligand molecules for activation (two glycine and two glutamate; Benveniste and Mayer, 1991; Clements and Westbrook, 1991), it may be that some binding sites on AMPA receptors are functionally silent.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interface interactions modulating desensitization of the kainate-selective ionotropic glutamate receptor subunit GluR6.

Ionotropic glutamate receptors from the AMPA and kainate subfamilies share many functional and structural features, but it is unclear whether this similarity extends to the molecular mechanisms underlying receptor desensitization. The current model for desensitization in AMPA receptors involves the rearrangement of dimers formed between subunit agonist binding domains. Key evidence for this has...

متن کامل

Lead exposure impairs the NMDA agonist-induced NOS expression in pyramidal hippocampal cells

Chronic exposure to lead (Pb) affects neural functions in central nervous system (CNS) particularly the learning and memory. On the other hand, alteration of calcium level in the CNS results in activation of NOS. It has been shown that lead enters the neurons through calcium channels and displaces Ca2+ from calcium binding proteins such as calmodulin and troponin C thereby affecting calcium-med...

متن کامل

Lead exposure impairs the NMDA agonist-induced NOS expression in pyramidal hippocampal cells

Chronic exposure to lead (Pb) affects neural functions in central nervous system (CNS) particularly the learning and memory. On the other hand, alteration of calcium level in the CNS results in activation of NOS. It has been shown that lead enters the neurons through calcium channels and displaces Ca2+ from calcium binding proteins such as calmodulin and troponin C thereby affecting calcium-med...

متن کامل

Subunit-specific desensitization of heteromeric kainate receptors.

Kainate receptor subunits can form functional channels as homomers of GluK1, GluK2 or GluK3, or as heteromeric combinations with each other or incorporating GluK4 or GluK5 subunits. However, GluK4 and GluK5 cannot form functional channels by themselves. Incorporation of GluK4 or GluK5 into a heteromeric complex increases glutamate apparent affinity and also enables receptor activation by the ag...

متن کامل

Why have Ionotropic andMetabotropic Glutamate Antagonists Failed in Stroke Therapy?

The concept of ‘‘excitotoxicity’’ was introduced in 1969 when Olney and Sharpe first demonstrated that neurons exposed to their own neurotransmitter glutamate were destined to die [49]. Later on, in 1985, glutamate toxicity was associated with anoxic cell death, since anoxic depolarization resulted in the release of glutamate into the extracellular compartments [42, 54]. Similarly, in 1987, Cho...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 18 1  شماره 

صفحات  -

تاریخ انتشار 1998